skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Konno, T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We perform an angular analysis of the B K * e + e decay for the dielectron mass squared, q 2 , range of 0.0008 1.1200 GeV 2 / c 4 using the full Belle dataset in the K * 0 K + π and K * + K S 0 π + channels, incorporating new methods of electron identification to improve the statistical power of the dataset. This analysis is sensitive to contributions from right-handed currents from physics beyond the Standard Model by constraining the Wilson coefficients C 7 ( ) . We perform a fit to the B K * e + e differential decay rate and measure the imaginary component of the transversality amplitude to be A T Im = 1.27 ± 0.52 ± 0.12 , and the K * transverse asymmetry to be A T ( 2 ) = 0.52 ± 0.53 ± 0.11 , with F L and A T Re fixed to the Standard Model values. The resulting constraints on the value of C 7 are consistent with the Standard Model within a 2 σ confidence interval. Published by the American Physical Society2024 
    more » « less
  2. We measure the complete set of angular coefficients J i for exclusive B ¯ D * ν ¯ decays ( = e , μ ). Our analysis uses the full 711 fb 1 Belle dataset with hadronic tag-side reconstruction. The results allow us to extract the form factors describing the B ¯ D * transition and the Cabibbo-Kobayashi-Maskawa matrix element | V cb | . Using recent lattice QCD calculations for the hadronic form factors, we find | V cb | = ( 40.7 ± 0.7 ) × 10 3 using the Boyd-Grinstein-Lebed parametrization, compatible with determinations from inclusive semileptonic decays. We search for lepton flavor universality violation as a function of the hadronic recoil parameter w and investigate the differences of the electron and muon angular distributions. We find no deviation from standard model expectations. Published by the American Physical Society2024 
    more » « less
  3. A<sc>bstract</sc> We report a search for the charged-lepton flavor violation in Υ(2S) →ℓτ±(ℓ=e, μ) decays using a 25 fb−1Υ(2S) sample collected by the Belle detector at the KEKBe+easymmetric-energy collider. We find no evidence for a signal and set upper limits on the branching fractions ($$ \mathcal{B} $$ B ) at 90% confidence level. We obtain the most stringent upper limits:$$ \mathcal{B} $$ B (Υ(2S)→ μτ±)<0.23×10−6and$$ \mathcal{B} $$ B (Υ(2S)→ eτ±)<1.12×10−6
    more » « less
  4. The ratio of branching fractions R ( D * ) = B ( B ¯ D * τ ν ¯ τ ) / B ( B ¯ D * ν ¯ ) , where is an electron or muon, is measured using a Belle II data sample with an integrated luminosity of 189 fb 1 at the SuperKEKB asymmetric-energy e + e collider. Data is collected at the ϒ ( 4 S ) resonance, and one B meson in the ϒ ( 4 S ) B B ¯ decay is fully reconstructed in hadronic decay modes. The accompanying signal B meson is reconstructed as B ¯ D * τ ν ¯ τ using leptonic τ decays. The normalization decay, B ¯ D * ν ¯ , produces the same observable final-state particles. The ratio of branching fractions is extracted in a simultaneous fit to two signal-discriminating variables in both channels and yields R ( D * ) = 0.262 0.039 + 0.041 ( stat ) 0.032 + 0.035 ( syst ) . This result is consistent with the current world average and with Standard Model predictions. Published by the American Physical Society2024 
    more » « less
  5. A<sc>bstract</sc> We report measurements of thee+e→$$ B\overline{B} $$ B B ¯ ,$$ B{\overline{B}}^{\ast } $$ B B ¯ , and$$ {B}^{\ast }{\overline{B}}^{\ast } $$ B B ¯ cross sections at four energies, 10653, 10701, 10746 and 10805 MeV, using data collected by the Belle II experiment. We reconstruct oneBmeson in a large number of hadronic final states and use its momentum to identify the production process. In the first 2 – 5 MeV above$$ {B}^{\ast }{\overline{B}}^{\ast } $$ B B ¯ threshold, thee+e→$$ {B}^{\ast }{\overline{B}}^{\ast } $$ B B ¯ cross section increases rapidly. This may indicate the presence of a pole close to the threshold. 
    more » « less